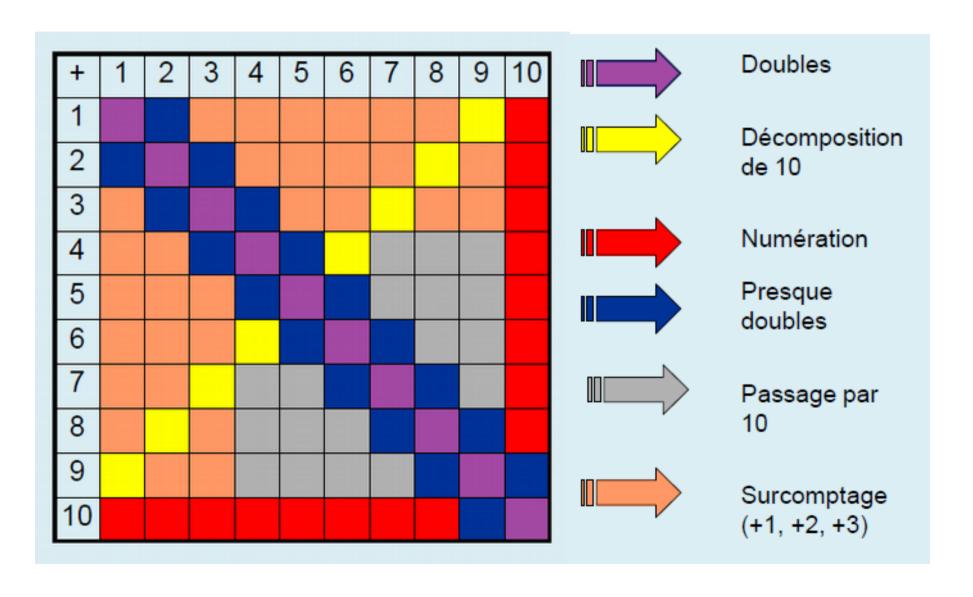
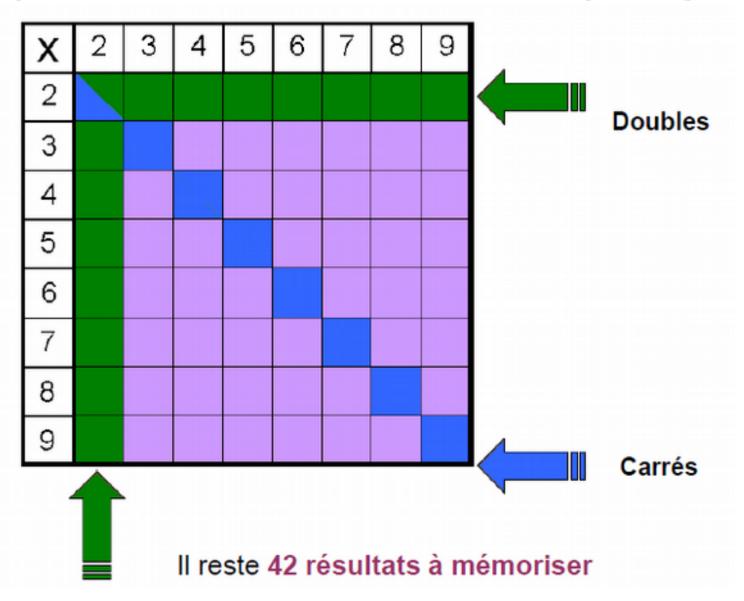
Enseigner les tables

« On mémorise mieux ce qu'on a compris que ce qu'on n'a pas compris.»

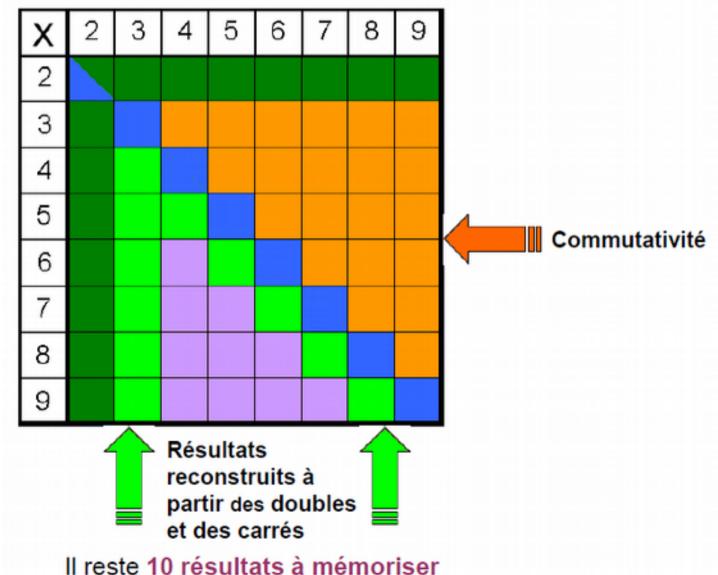

Roland Charnay, professeur de mathématiques

Enseigner les tables

« Il est plus facile de **mémoriser** un ensemble de **résultats** qui sont **structurés**, qui ont du **lien entre eux**, qu'un ensemble de résultats qui sont tous isolés les uns des autres »


Roland Charnay, professeur de mathématiques

Additions avec la table de Pythagore



Les doubles	Travaillée d'abord comme une comptine ou avec le jeu du furet de 2 en 2, la mémorisation des doubles des premiers entiers ne présente pas de difficulté majeure et est en général rapide. Il faut en entretenir la mémorisation et travailler la rapidité de restitution des résultats.	Faits num ériques
Les amis pour faire 10 ou compléments à 10	C'est un passage obligé pour l'ensemble des activités numériques au cycle 2 et ultérieurement : il faut installer cette connaissance et l'entraîner tout au long du cycle.	Faits num ériques
La mum ération	La difficulté tient au fait que le nom des nombres de onze à seize ne reflète pas leur écriture. Ce sont donc bien des connaissances qu'il faut installer, en automatisant la correspondance entre les trois formes de représentation des nombres : nom du nombre, écriture chiffrée, représentation analogique (collection) comme cela se travaille à l'école maternelle pour les tout premiers nombres.	Faits num ériques
Les « presque » doubles	Une fois les doubles installés, il s'agit de trouver une stratégie pour déterminer les presque doubles en utilisant les connaissances travaillées précédemment (suivant, précédent, doubles). Deux stratégies peuvent émerger : $6+5=6+6-1=12-1=11\\6+5=1+5+5=1+10=11$	Procédure
Le passage par 10	Il s'agit de construire une procédure s'appuyant sur une bonne connaissance des « amis pour faire 10 » ou « compléments à 10 ». Cette procédure sollicite également l'associativité de l'addition (et éventuellement la commutativité). 9 + 7 = 9 + 1 + 6 = 10 + 6 = 16	Procédure
Le surcomptage avec utilisation de la commutativité	Il s'agit de construire une procédure ayant recours au surcomptage +1, +2 et +3 avec utilisation de la commutativité « pour mettre le plus grand en premier ».	Procédure

Multiplication avec la table de Pythagore

Multiplication avec la table de Pythagore

Multiplication avec la table de Pythagore Autre proposition

X	1	2	3	4	5	6	7	8	9	10
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Élément neutre	1 est l'élément neutre de la multiplication c'est-à-dire que quelque soit n, n x 1 = n	procédure			
Numération	La connaissance de « n » x 10 ou de 10 x « n » s'appuie sur la maîtrise de la numération décimale de position : « n » x 10, c'est « n » dizaines.	procédure			
Doubles	La connaissance des doubles s'élabore depuis la maternelle.				
Table de 5	Cycle 2	faits numériques			
Table de 3	Cycle 2	1			
Table de 6	6 est le double de 3. Construction et mémorisation de cette table en prenant appui sur la table de 3 et sur la connaissance des doubles.	autanaian da			
Table de 4	4 est le double de 2. Construction et mémorisation de cette table en prenant appui sur les doubles	faits numériques			
Table de 8	8 est le double de 4. Construction et mémorisation de cette table en prenant appui sur les doubles	connus			
Table de 9	Il est important de faire remarquer aux élèves que - « Lorsque je récite la table, le chiffre des dizaines avance toujours de 1, alors que le chiffre des unités recule toujours de 1. Ex : 18, 27, 36 » - « Quand je dis 3 x 9, le résultat pour les dizaines c'est 3 moins 1, et pour les unités c'est le complément à 9. » - « Quand je dois décomposer un nombre à deux chiffres dont la somme des chiffres est 9, je suis dans la table de 9. »	procédure			
7x7	49!	faits numériques			

L'enseignement des tables et celui des procédures doivent être distingués.

La mémorisation des tables est prise en charge par l'école.

L'élève doit être capable :

- de représenter mentalement les nombres,
- de concevoir les relations entre ceux-ci,
- de comprendre le sens des opérations en jeu, avant de mémoriser les tables.

Des points d'appui permettent progressivement de construire les résultats à mémoriser :

- 1. les décompositions en appui sur le nombre 5
- 2. le complément à 10 pour la table d'addition
- 3. la connaissance des doubles
- 4. les tables de 2 et 5 pour la multiplication
- 5. la commutativité des opérations : $2 \times 7 = 7 \times 2 = 14$

Bibliographie:

Le nombre au cycle 2 et Le nombre au cycle 3 apprentissages numériques SCEREN Le calcul mental au quotidien cycles 2 et 3, François Boule SCEREN

Le calcul mental entre sens et technique, Denis Butlen